【深層学習】Attention - 全領域に応用され最高精度を叩き出す注意機構の仕組み【ディープラーニングの世界 vol. 24】#095 #VRアカデミア #DeepLearning
高評価: 2,164件
再生: 93,262回
公開日: 2021年3月26日
▼テーマ
Transformer や BERT で爆発的な利用を獲得した Attention の祖となるネットワーク RNNsearch について解説します。
Attention は自然言語で GPT-3 の化け物的な精度を出したのみならず、画像や生成モデルなど、超広い領域に応用されています。
今の Deep Learning を語る上では外せない要素! 要チェック!▼関連プレイリスト
Deep Learning の世界 https://www.youtube.com/playlist?list=PLhDAH9aTfnxKXf__soUoAEOrbLAOnVHCP自然言語処理シリーズ https://www.youtube.com/playlist?list=PLhDAH9aTfnxL4XdCRjUCC0_flR00A6tJR
▼目次
(後で追加します。暫くお待ちください)▼参考文献
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/abs/1409.0473
原論文です! 当時の歴史も含めて、過度に難解でない感じで書いてあるので、読んでみてもいいかも!【2019年版】自然言語処理の代表的なモデル・アルゴリズム時系列まとめ - Qiita https://qiita.com/LeftLetter/items/14b8f10b0ee98aa181b7
いろいろこれを参考にして動画を作っています▼参考動画
RNN の動画
→ https://www.youtube.com/watch?v=NJdrYvYgaPM&list=PLhDAH9aTfnxKXf__soUoAEOrbLAOnVHCP&index=8GRU の動画
→ https://www.youtube.com/watch?v=K8ktkhAEuLM&list=PLhDAH9aTfnxKXf__soUoAEOrbLAOnVHCP&index=10RNN の3つの使い方(BiGRU のところよくわからなかった人向け)
→ https://www.youtube.com/watch?v=IcCIu5Gx6uA&list=PLhDAH9aTfnxKXf__soUoAEOrbLAOnVHCP&index=9Bi-LSTM の動画( Bi-GRU の仲間)
→ https://www.youtube.com/watch?v=O1PCh_aaprE&list=PLhDAH9aTfnxKXf__soUoAEOrbLAOnVHCP&index=12▼終わりに
ご視聴ありがとうございました!
面白かったら高評価、チャンネル登録お願いします。
動画の質問、感想などは、コメント欄やTwitterにどうぞ!
お仕事、コラボのご依頼は、TwitterのDMからお願い致します。
動画生成:AIcia Solid (Twitter: https://twitter.com/AIcia_Solid/ )
動画編集:AIris Solid (妹) (Twitter: https://twitter.com/AIris_Solid/ )
=======
Logo: TEICAさん ( https://twitter.com/T_E_I_C_A )
Model: http://3d.nicovideo.jp/works/td44519
Model by: W01fa さん ( https://twitter.com/W01fa )
説明文の続きを見る
自然言語処理シリーズ
- ▲ 前の10件を見る
- 【自然言語処理】Elasticsearch 徹底解説 - スコアリングのロジックについて【Elasticsearch への道③】#086 #VRアカデミア
- 【深層学習】RNNLM - 自然言語処理に革命を起こした RNN について【ディープラーニングの世界 vol. 20】#087 #VRアカデミア #DeepLearning
- 【深層学習】word2vec - 単語の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 21】#089 #VRアカデミア #DeepLearning
- 【深層学習】word2vec の数理 - なぜ単語の計算が可能なのか【ディープラーニングの世界 vol. 22】#090 #VRアカデミア #DeepLearning
- 【深層学習】doc2vec - 文章の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 23】#093 #VRアカデミア #DeepLearning
- 【深層学習】Attention - 全領域に応用され最高精度を叩き出す注意機構の仕組み【ディープラーニングの世界 vol. 24】#095 #VRアカデミア #DeepLearning
- 【深層学習】fasttext - 単語の内部構造を利用した版 word2vec 【ディープラーニングの世界 vol. 25】#097 #VRアカデミア #DeepLearning
- 【深層学習】GNMT - Google翻訳の中身を解説!(2016)【ディープラーニングの世界 vol. 26】#103 #VRアカデミア #DeepLearning
- 【深層学習】SCDV - 文章ベクトルをソフトクラスタとスパース化で精度アップ!【ディープラーニングの世界 vol. 27】#104 #VRアカデミア #DeepLearning
- 【自然言語処理】BLEU - 定義は?どういう意味?何で利用されてるの?【機械翻訳の評価指標】#105 #VRアカデミア
- 【深層学習】Transformer - Multi-Head Attentionを理解してやろうじゃないの【ディープラーニングの世界vol.28】#106 #VRアカデミア #DeepLearning
- ▼ 次の10件を見る
Deep Learning の世界
深層学習について、その基礎から GPT シリーズまでを解説しています。 今後、ChatGPT 以降の発展を追加予定です。
- ▲ 前の10件を見る
- 【深層学習】SENet - 「圧縮興奮機構」による性能向上【ディープラーニングの世界 vol. 19】#082 #VRアカデミア #DeepLearning
- 【深層学習】RNNLM - 自然言語処理に革命を起こした RNN について【ディープラーニングの世界 vol. 20】#087 #VRアカデミア #DeepLearning
- 【深層学習】word2vec - 単語の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 21】#089 #VRアカデミア #DeepLearning
- 【深層学習】word2vec の数理 - なぜ単語の計算が可能なのか【ディープラーニングの世界 vol. 22】#090 #VRアカデミア #DeepLearning
- 【深層学習】doc2vec - 文章の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 23】#093 #VRアカデミア #DeepLearning
- 【深層学習】Attention - 全領域に応用され最高精度を叩き出す注意機構の仕組み【ディープラーニングの世界 vol. 24】#095 #VRアカデミア #DeepLearning
- 【深層学習】fasttext - 単語の内部構造を利用した版 word2vec 【ディープラーニングの世界 vol. 25】#097 #VRアカデミア #DeepLearning
- 【深層学習】GNMT - Google翻訳の中身を解説!(2016)【ディープラーニングの世界 vol. 26】#103 #VRアカデミア #DeepLearning
- 【深層学習】SCDV - 文章ベクトルをソフトクラスタとスパース化で精度アップ!【ディープラーニングの世界 vol. 27】#104 #VRアカデミア #DeepLearning
- 【深層学習】Transformer - Multi-Head Attentionを理解してやろうじゃないの【ディープラーニングの世界vol.28】#106 #VRアカデミア #DeepLearning
- 【深層学習】忙しい人のための Transformer と Multi-Head Attention【ディープラーニングの世界 vol.29 】#107 #VRアカデミア #DeepLearning
- ▼ 次の10件を見る
アイシア動画
- ▲ 前の10件を見る
- 【深層学習】word2vec - 単語の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 21】#089 #VRアカデミア #DeepLearning
- 【深層学習】word2vec の数理 - なぜ単語の計算が可能なのか【ディープラーニングの世界 vol. 22】#090 #VRアカデミア #DeepLearning
- 【因子分析】プロマックス回転 - 使い方から数式と原理まで解説【バリマックスを過激化させた斜交回転】 #092 #VRアカデミア
- 【深層学習】doc2vec - 文章の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 23】#093 #VRアカデミア #DeepLearning
- 【ラグランジュの未定乗数法】あの計算の意味、説明できますか?【幾何的イメージも解説】#094 #VRアカデミア
- 【深層学習】Attention - 全領域に応用され最高精度を叩き出す注意機構の仕組み【ディープラーニングの世界 vol. 24】#095 #VRアカデミア #DeepLearning
- 【登壇するよ!】Developer eXperience Day 2021【無料!聞きに来て!】#096 #VRアカデミア
- 【深層学習】fasttext - 単語の内部構造を利用した版 word2vec 【ディープラーニングの世界 vol. 25】#097 #VRアカデミア #DeepLearning
- 【わたしの博士課程】生活、進路、楽しみ、苦しみ、色々話したよ!【博士(数理科学 / 東京大学大学院)の場合】#098 #VRアカデミア
- 【数量化II類の数理①】データの行列表現と共分散計算【数量化理論 - 数理編 vol. 1】 #099 #VRアカデミア
- 【数量化II類の数理②】実践! Lagrange の未定乗数法と固有値・固有ベクトル【数量化理論 - 数理編 vol. 2】 #100 #VRアカデミア
- ▼ 次の10件を見る
人気のチャンネル
予備校のノリで学ぶ「大学の数学・物理」
予備校のノリで学ぶ「大学の数学・物理」のチャンネルでは主に ①大学講座:大学レベルの理系科目 ②高校講座:受験レベルの理系科目 の授業動画を...
1,260,000人
661本
313,350,689回
4,685,206件
【楽しい授業動画】あきとんとん
ただの塾講師。 勉強が苦手な人のために,動画をあげていきたいと思います。 気付いたら,勉強の知識が入っていた!!ってぐらい楽しい授業を目...
630,000人
924本
42,184,016回
823,036件
YouTube高校 / 日本史・世界史
日本中を回って撮影した映像で日本史解説の動画を作っています Twitter:Y_Eschool Instagram:You.ele....
621,000人
407本
124,951,664回
908,134件





ラッキー動画







