Search image

【深層学習】word2vec - 単語の意味を機械が理解する仕組み【ディープラーニングの世界 vol. 21】#089 #VRアカデミア #DeepLearning

Bt to youtube video

高評価: 1,238件

再生: 45,228回

公開日: 2021年1月29日

▼テーマ
単語をベクトルで表す単語分散表現の中で最も有名な word2vec の紹介です。
word2vec は4種のアルゴリズムの総称です。
それぞれを丁寧に説明していきます。

▼関連プレイリスト
Deep Learning の世界 https://www.youtube.com/playlist?list=PLhDAH9aTfnxKXf__soUoAEOrbLAOnVHCP

自然言語処理シリーズ https://www.youtube.com/playlist?list=PLhDAH9aTfnxL4XdCRjUCC0_flR00A6tJR

▼目次
00:00 OP
==== 1.単語分散表現 ====
02:06 1-1 単語分散表現って何?
03:56 1-2 分散表現が得られると何が便利なのか?
==== 2.word2vec ====
08:31 2-1 引用論文紹介
09:14 2-2 引っかかりポイント①:word2vecは総称
11:45 2-3 CBOWはどんなタスクを解くのか?
14:00 2-4 引っかかりポイント②:目的とやってることのズレ
16:33 2-5 CBOWのモデル解説
20:21 2-6 ここまでのストーリーと残る謎のおさらい
21:51 2-7 学習結果から分散表現を手に入れる
25:40 2-8 ここまでのまとめ
26:54 2-9 skip-gramが解くタスクとモデル解説
30:30 2-10 2つの高速化の手法とアイデア紹介
34:49 2-11 今日のまとめ
36:02 ED
==== 3.なぜ単語の演算ができるのか? ====
...は次回です! お楽しみに!

▼参考文献
Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).
https://arxiv.org/abs/1301.3781
現論文はこちら!
これを読めば、 word2vec が複数のモデルの総称であることは一目瞭然!

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems 26 (2013): 3111-3119.
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
negative sampling について書かれています。 Mikolov さん大活躍ですね

Morin, Frederic, and Yoshua Bengio. "Hierarchical probabilistic neural network language model." Aistats. Vol. 5. 2005.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.8829&rep=rep1&type=pdf#page=255
Hierarchical Softmax は実は2005年の論文から存在しています。
詳細が知りたい方はこちらをどうぞ!

【2019年版】自然言語処理の代表的なモデル・アルゴリズム時系列まとめ - Qiita
https://qiita.com/LeftLetter/items/14b8f10b0ee98aa181b7
シリーズ構成で大変参考にしております。色々まとまってて good です!

▼終わりに
ご視聴ありがとうございました!
面白かったら高評価、チャンネル登録お願いします。
動画の質問、感想などは、コメント欄やTwitterにどうぞ!
お仕事、コラボのご依頼は、TwitterのDMからお願い致します。
動画生成:AIcia Solid (Twitter: https://twitter.com/AIcia_Solid/ )
動画編集:AIris Solid (妹) (Twitter: https://twitter.com/AIris_Solid/ )

=======
Logo: TEICAさん ( https://twitter.com/T_E_I_C_A )
Model: http://3d.nicovideo.jp/works/td44519
Model by: W01fa さん ( https://twitter.com/W01fa )

説明文の続きを見る

Phqxfllj0xw tfrjfzvfsof vihxvikc1hosnpdevcyijftrrzsvvroll5tpg26invd3ycig=s800 c k c0x00ffffff no rjAIcia Solid Project

Hqdefault自然言語処理シリーズ

Phqxfllj0xw tfrjfzvfsof vihxvikc1hosnpdevcyijftrrzsvvroll5tpg26invd3ycig=s800 c k c0x00ffffff no rjAIcia Solid Project

HqdefaultDeep Learning の世界

深層学習について、その基礎から GPT シリーズまでを解説しています。 今後、ChatGPT 以降の発展を追加予定です。

Phqxfllj0xw tfrjfzvfsof vihxvikc1hosnpdevcyijftrrzsvvroll5tpg26invd3ycig=s800 c k c0x00ffffff no rjAIcia Solid Project

Hqdefaultアイシア動画

Luckeyラッキー動画

ラッキー動画とは登録されている全動画の中からランダムに選ばれた動画です。運命の出会いかも?!

Pickup iconPick upチャンネル

東大物理学科卒、日本物理オリンピック金賞など輝かしい実績を持つガチ中ガチ、林先生です。取り扱う問題は難しいですが解説は丁寧かつ論理的で分かり易いので受験生におすすめ!

Studytube icon 96ログイン

Interview header 360 Question header 360
Studytuber banner 300

Studytube icon 96チャンネル登録

教育系のYouTubeチャンネルを運営されている方はチャンネル情報の登録に是非ご協力ください。ログイン後、読み込みボタンをクリックすることでチャンネルデータが自動で読み込まれます。

Studytube icon 96ご意見・ご感想

※お返事が必要な場合はお問い合わせからお願いいたします。